GE Aviation: Perspectives on Clean, Efficient Engines

Dr. Dale Carlson

May 7, 2013

imagination at work

"I find out what the world needs, then I proceed to invent it."

Technical innovation ...

Key to our past and future

U.S. jet engine U.S. turboprop engine Mach 2 engine High bypass engine Variable cycle turbofan engine Unducted fan engine Composite fan blade in airline service 120,000+ lb thrust engine 4D trajectory flight in revenue service Modular power tile **FMS-controlled Unmanned Aircraft System**

50 years of engine improvements

imagination at work

Commercial engines...by thrust rating

CFM, CFM56, LEAP and the CFM logo are trademarks of CFM International, a 50/50 joint company between Snecma and GE EA (GP line) is a 50/50 JV between GE and Pratt & Whitney

The Future:

Global forces/environment

Industry drivers

Oil & crack spread

\$140

\$120 \$100

199/\$80 \$60 \$40

\$20

\$-

Aug-09

Energy Information Agency (EIA)

Feb-11

2010

Aug-10

Nov-10

Global semi-conductor billings

Feb-10

May-10

SIA, 3 month moving average (Per MM)

Nov-09

2009

U.S Non-defense capital goods orders

Nov-11

Iran have both pushed oil prices to 3 month high

2011

Aua-11

May-11

U.S Bureau of Labor Statistics (Orders, seasonally adjusted, \$B)

2012

May-12

Feb-12

Aug-12

Commercial aviation growing steadily

Highest production ramp rates in 3 decades ... inconsistent with demand growth

Boeing and Airbus are increasing rates to \sim 40 / month. That means: 40 x 2 (Airbus & Boeing) x 11.5 mth. / yr. = 920 / yr. or \sim 1,000 including the other new single aisles.1,000 x 5 years = 5,000 / 10 yrs. = 10,000 / 20 yrs. = 20,000 aircraft.

CFM, CFM56, LEAP and the CFM logo are trademarks of CFM International, a 50/50 joint company between Snecma and GE

imagination at work

EA is a 50/50 JV between GE and Pratt & Whitney

Technology success takes commitment and opportunity

Commitment ... \$1-2 billion continuous technology investment per year

Opportunity ... **10** new engines proving and maturing technology

imagination at work

CFM i CFM, CFM56, LEAP and the CFM logo are trademarks of CFM International, a 50/50 joint company between Snecma and GE s a 50/50 JV between GE and Snecma

EA is a 50/50 JV between GE and Pratt & Whitney

Our Industry-Specifically Propulsion

- Timescales of innovation long...safety demands technologies to be proven...strategic vision/commitment a must (Gamma TiAl, CMC, etc.)...multi-decade VISION
- Almost every flying technology started as a USG funded (NASA, DoD, etc.) early TRL level study, many driven to TRL 5 or 6. Changing dynamics/players...WTO agreement, sequestration, emerging funding sources
- Doubling of revenue miles every 13-15 years despite "shocks" such as 911
- Question: How many "tube/wing" iterations are left?
 - > 15% campaign/campaign FB improvement a must
 - > ICAO 2050 CO_2 commitment, other regs looming

Technology Readiness to Serve

Today and Tomorrow

imagination at work

.....

AIRBUSA320

Over 8000 engineers around the globe 3000 technologists at 5 Global Research Sites

Practical innovation ... GE's model

Global resources teamed to advance technology

Idea creation 🕇

- Internal
- Customers
- Government
- Universities (300+ relationships)

Technology maturation

- Cross-disciplinary teams
- Technology roadmaps
- TRL/MRL maturation plans
- Long-term growth strategies
- Tactical funding

Winning products

• 30+ new technologies by 2020

The Physics of "Readiness to Serve"

$Range = \left(\frac{V_0}{SFC}\right) * \left(\frac{L}{D}\right) * \ln\left(\frac{W_{initial}}{W_{final}}\right)$				
$= (FHV * \eta_{thermal} * \eta_{transfer} * \eta_{propulsive}) * (\frac{L}{D}) * \ln\left(1 + \frac{W_{fuel}}{W_{payload} + W_{em}}\right)$				W _{fuel} V _{payload} + W _{empty}
Today	 Highly Loaded Compressors High OPR Low Emissions Combustors 	 Low Loss Inlets Variable Low Loss Exhausts 	 Very High BPR Turbofans Ultra High BPR Turbofans 	 Novel Alloys / MMC's Non-metallics
2020-2050?	 Adaptive cycles Constant Volume Combustion Hybrid Electric Propulsion 	 Distributed Power Transmission 	 Open Rotors Distributed Propulsion Wake Ingestion 	Advanced Engine Architectures

Essential technologies ... keeping the pipeline filled

Technology

Technology demonstrator programs

Advanced materials

Carbon fiber fan blades have proven durability

- GE90 field experience ...
- No Airworthiness Directives (AD's) or special inspections
- No flight line lubrication
- Incredibly durable almost maintenance free
- 180+ bird ingestion events with only 1 blade not serviceable
- SOURCE: GE90 in service record

Ceramic Matrix Composites ... future of performance **EIS** configuration **Enhancement**

1 st

commercial

application

Stg1 Shroud CMC

CMC HPT stage 2 airfoils

Further CMC incorporation

No cooling air losses

1/3the weight

Higher thermal capability

2016 **EIS** performance

Future

GE ceramic-matrix composites (CMCs) development

Game changing material technology ... reduced Fuel Burn through lower cooling flow and weight

CMC service introductions built on 20+ years of development

Gamma TiAl turbine blades

World's first certified intermetallic application

Manufacturing Development

Turbine airfoils

Dayton

Rotating parts

Cincinnati

Manufacturing support

Cincinnati

Additive manufacturing Cincinnati

Automation Canada

CMC composites Newark

PMC/Ox-Ox composites

Cincinnati

Structures Cincinnati

Technology readiness > research to production

Manufacturing readiness > industrialization

Aerodynamics

....

Evolution of fan technology

1992 - CF6-80E

Titanium blades Metal casing 34 airfoils Shrouded Radial aero

Today Compound swept aero Composite blades Composite casing 18 airfoils Unshrouded High eff / high flow

imagination at work

Significant fuel burn reduction

eCore technology...delivers thermal efficiency and retention

Performance efficiency

- Next generation 3D Aero
- 22:1 PR in 10 stages ... best in industry

Performance retention

- Short, stiff core retains performance
- Rigid aft case maintains clearances
- Blisks minimize dovetail leakage

Operability

• Stall-free performance

Compressor aerodynamics for LEAP

Efficiency, performance retention, maintenance costs

3rd generation 3-D aerodynamic design

- Advanced sweep
- End wall contouring... tip and root
- Balanced stage loading

Bowed stators

CFM, CFM56, LEAP and the CFM logo are trademarks of CFM International, a 50/50 joint company between Snecma and GE

Integral bladed disks

imagination at work

Advanced turbine cooling & efficiency

GE Aviation

Combustion

Lean-burn combustion ... over 25 million hours of experience

Cruise NOx improvement versus typical rich-quench-lean combustor (NOx emission per lb of fuel*)

*On ground, 1000F combustor inlet temperature

Comparison with DLE made assuming equivalent operating pressures and liquid fuel

CFM, CFM56, LEAP and the CFM logo are trademarks of CFM International, a 50/50 joint company between Snecma and GE.

Lean combustion lowers NOx

Lean-burn combustion ... lowers HPT distress & improves thermal efficiency

TAPS lean combustor

- Lean flame reduces local hot spots
- Improves turbine part life for better **TOW and HPT maintenance cost**
- Reduced NOx, achieves CAEP/10 limits

*Twin Annular Pre-mixing Swirler

Typical rich burn

combustor.

TAPS lean burn

combustor

Bringing it all together

imagination at worl

ARBUSA320

Technology readiness for EIS and growth

Continuous investment produces multiple technologies & innovations

Composites

Lighter, durable blades & case

... maintenance free fan

4

Core efficiency

3rd generation 3D aero & debris rejection High Press. Ratio HPCs

Combustor

Low temp. profile and lean burning

... durable combustor

CMC's / TiAl / Cooling / Coatings

Better efficiency with same metal temp.

... durable HPT & LPT

GEnx

Integrating new technologies throughout the engine

LEAP The next generation of technology

Entry Into Service ~2016

35 GE Aviation

The Future: Open rotor tests

- GE/FAA/NASA testing began in 2009
- Test builds on 1985 demonstration
 - Acoustics validation
 - Aero model validation
 - New blade concepts
 - Installation effects
 - Pitch change effects
 - Pylon, sidewall interaction

No Tube & Wing? BLI / Wake Propulsion

Reenergizing aircraft wake via distributed propulsion

Aircraft Installation and

integration Critical

) imagination at work

> 10% Fuel Burn Savings Potential

Hybrid Turbo/Electric Engine Concepts

Multiple potential configurations

- Power transfer between shafts
- Back-up power, eliminate APU, EPU
- Aircraft systems synergy
- Electric idle / taxi operation
- Reduced energy costs

Superconducting Machines

Superconducting Turbo-Electric Propulsion

magination at work

* Relative to 2000 SOA TF

GE's commitment ...

- Technology innovation for customer value
- Learning from the world's largest installed fleet
- Focusing on people, processes, and tools
- To be prepared for, and shape, the future of flight

imagination at work