WESTERN AEROSPACE EXPO

Additive Manufacturing

Aerospace – Defence

Celebrating 20 Years

- Founded in 1993
- Full Line Stratasys Partner for Canada
- Strong Design / Manufacturing background
- Service Commercial and Academic Markets
- Business based exclusively on Stratasys Products

- Stratasys Ltd. (SSYS) Nasdaq
- #1 3D Printer Manufacturer in the world.
- Both in Revenue and Unit Sales
- 350M + Revenue
- Over 1200 employees

• FDM Technology Overview

Advanced Applications

- Rapid Tooling for Metal Forming
- Rapid Tooling for Composites
- Rapid Tooling Jigs & Fixtures
- Direct part production End Use Parts
- Success Stories Case Studies

Fused Deposition Modeling : FDM

- Dual extrusion head technology
- Deposit liquefied build and support
- Precise Additive Fabrication
- Advanced materials
- Advanced mechanical properties
- Safe, Simple, Clean process

IDEA Series PRODUCTION
Series Image: Construction of the series Image: Cons

Differentiators

- Envelope size
- Materials
- Accuracy
- Throughput
- Resolution

Enablers

- Customization
- Repeatability
- Flexibility
- Complex Part Fabrication

Engineering Grade Thermoplastics

Matoria	Ontione
wateria	

ABS-M30

ABS-M30i

ABS-ESD7

PC-ABS

PC (Polycarbonate)

PC-ISO Class 6:

Pharmaceutical

Ultem 9085 *

Polyphenylsulfone PPSF

Support Material

*Ultem 9085 is a trademark of SABIC Innovative Plastics IP BV.

ULTEM 9085 Aerospace & Defence Grade

FDM Materials

^{*}Ultem 9085 is a trademark of SABIC Innovative Plastics IP BV.

- SABIC Engineered
- Certificate of Conformance available
- High tensile and compressive strength
- High operating temperature
- Passes FAR 25.853

Aerospace Grade Thermoplastic

Passes FAR 25.853 ✓ Vertical burn test ✓ FST zero rating ✓ UL94 V0 Radiant Heat OSU 55/55 PASS

	Result	Limit
Off Gassing ASTM E595	PASS	
Total Mass Loss (TML)	0.41 %	1.00 %
Collected Volatile Condensate Material (CVCM)	< 0.01%	0.10 %
Water Vapour Recovery Report (WVR)	0.37	Report

(Design)

Direct Digital Manufacturing (Manufacturing)

High Complexity, Low Quantity

- Specialty End Use Parts
- Rapid Tooling
- Low Volume Production

Complexity

Advanced Applications

Demonstrated Applications

- Hydro Forming
- Rubber Pad Forming

Demonstrated Tooling

- Female, Blow Down Tools
- Male Tools
- Punch Tools
- Pressure Intensifiers
- Matched Male & Female Tools
- Back Filled Tools

Demonstrated Conditions:

- Range of alloys and thickness tested
- Demonstrated forming pressures up to 10KSI
- Variety of tools >100 cycles, some > 500 cycles
- Large jointed tools have been tested

Punch

Rubber Pad

Hydroform

Pressure Intensifiers

Large Tools

- 2.3m Long Hydro Form Tool
- PC Material
- Methods to join parts proven

Optimized Tool

- Match FDM material to forming pressure
 - ABS max 20.7 MPa
 - PC max 55.2 MPa
 - ULTEM max 68.9 MPa
- Rubber Pad Tool optimized for cost and build time
 - ~ \$200. in material
 - ~ 8 hour build time

Original Tool

Metal Forming

Demonstrated Application : Coordinated Tool Family

ADDITIVE MANUFACTURING Aerospace - Defence

Example

- MRO application
- Corrosion in frame needs repair

Solution

- Damage area is reverse engineered
- CAD model of repair is created
- Tool family built "lights out" with FDM
- Repair part fabricated with Hydroform tool
- Part trimmed & piloted at bench level

Benefits

- Entire repair is digitally coordinated
- Lights out tool fabrication
- Minimize time on aircraft

Frame needing repair

Tool Design

Hydroform Tool

Trim & Drill Tool

Installed Part

Metal Forming Case Study

Piper Reduces the Cost and Leadtime of Hydroforming Tool to Build a personal Jet

"I can program an FDM part in 10 minutes while typical CNC program takes four hours to write"

-Jacob Allenbaugh, Manufacturing Engineer, Piper Aircraft

- Producing hundreds of aluminum structural components
- Inner frame components, gussets, brackets, skins etc.
- FDM as the manufacturing process
- PC Material 3000 to 6000 psi
- Ultem 9085 for up to 10,000 psi
- Hydroform Tooling
- Produce route , drill and trim fixtures with FDM
- Program FDM part 10 min vs. 4 hrs CNC
- No operator attendance
- Less material waste

Aluminum Window Pan (left) FDM Tool

Aluminum Window Pan on top of FDM Tool

How Did FDM Compare to Traditional Methods for Piper Aircraft?

Method	Time
CNC Machined Tooling	14 days
FDM Tooling	4.5 days
SAVINGS	9.5 days (68%)

FDM Tool Material Selection

• Maximum tool use temperature (usually the same as resin cure temperature) determines the material choice.

CTE Compensation

• Part size & accuracy requirements determine whether CTE compensation is required.

Tool Bagging Method

• Determines developed loads on tool & tool surface finish requirements.

Tool Build Orientation

• Build orientation affects surface roughness and tool strength.

Tool Finishing

• Tool finishing method is dependent on desired part surface finish.

Composite Applications Material Compatibility

ADDITIVE MANUFACTURING Aerospace - Defence

Demonstrated Lay-Ups

- Fibers: Carbon, Glass, Kevlar
- Resin Systems: Epoxy & Polyester

Demonstrated Tools

- Patterns Low Temp Cure Tooling Composite
- Lay Up Tools < **350°F** (177°C) cure
- Pre-lay up/ply consolidation tool
- Pressure intensifiers / caul plates

Notes

- Surfacing methods available
- Release agents tested
- CTE compensation must be considered
- FDM material CTE information available.

Design

- Ultem Material
- 6 mm thick
- Build Time: 5 hrs
- Tool surfaced with epoxy
- Vibratory polish (hands off) 1 hour

Use

- Release surface
- Lay up part
- Envelope bagging balances forces
- Cured @ 250 F, @ 80 psi
- Geometry Sensitive

Tool

- Thickness 8mm (0.31")
- Material PPSF

Lay Up

- Aramid fiber, 108g.m2
- 180 c epoxy resin

Results

- Final tolerance ±0.25 (0.010") on 350mm (12")
- No spring back effect on "C" shape

FDM Lay up tooling allowed for:

- Out-of autoclave fabrication of large complex shapes
- Low cost rapid fabrication tooling for co-cured stiffeners
- Reduction in production time
- Reduction in production costs

Engineering, Operations & Technology Boeing Research & Technology

FDM Stiffener Layup Tool

Complex shapes

• Wide variety of shapes and sizes in test

High strength

- Not brittle
- Handles off axis winding loads

Wash Out

- Hot water & detergent
- Compatible with epoxy resins
- Not recommended for polyester resins

Benefits

- Reduces costs, cycle times, risk
- Eliminates traditional mandrel cast tooling & labor & cycle time
- Eliminates scrap rates related to traditional mandrel removal
- Provides flexibility for early design iterations

Ultem S1 Core

- Compromised with acetone
- Becomes brittle
- Broken into pieces for removal

Application

- Inlet duct size =0.6 m x 0.6m x 0.9m (2'x2'x3')
- Trapped geometry

Solution

- 180 degree Celsius OoA composite system
- 2 hr 130 C (266 F) initial cure
- 2 hr free standing 180 C (356 F) post cure
- Ultem S1 break out core

Results

- Tool build time < 8 days
- Reduced tool lead time to < 14 days
- Tool maintained less than +/- 1 mm (0.040") accuracy

Project worked with NGC under Call 6 Program

Composite Break Out Core Case Study

ADDITIVE MANUFACTURING Aerospace - Defence

Tool Prep

Out of Autoclave Layup

Debulking

Envelope Bagging

Cured Composite Structure

Tool Break Out

Example

Aircraft access door

Coordinated Tools & Parts

- Lay up mold defined by solid model
- Net shaped core defined by same model
- Trim & drill tool mastered to same solid model

Finished Part

ADVANCED COMPOSITE STRUCTURES

Types

- Scribe Tool
 - Edge of tool is net
 - Scribe is used to transfer EOP to part
- Off Set Tool
 - Tool edge is inset
 - Provides guide surface for cutting tool
 - Prevents removal of too much material

When to use FDM

- Complex shapes
- Ergonomic light weight
- More stable than fiberglass in high humidity environments

Types

- Direct Built
 - Shape and hole pattern are controlled by FDM build
- Precision
 - Shape built on FDM
 - Hole pattern drilled by CNC
- Transfer
 - Build desired shape with FDM
 - Bushings potted while pinned to master

When to use

- Complex shapes
- Multi axis hole patterns
- Ergonomic light weight
- More stable than fibreglass in humid environments

Demonstration

- FDM Tool Material ULTEM
- Formed 0.25" Kydex material
- Tool built with internal structures for
 - Combination of internal porosity and stiffeners
 - Heavier forming pressures
 - Higher temperatures
 - Higher material shrinkage forces

Results

- 100% drawn down achieved
- Tough corners formed well
- Shape & complexity is a strength of FDM

- Assembly Tools
- Jigs & Fixtures
- Surrogate Parts

Benefits

- Custom interfaces for complex surfaces
- Minimize part handling damage
- Optimized for access without increased costs
- Light weight ergonomic

Enables:

- Reduced dependency on external suppliers
- Overnight fulfillment of new tooling requirements
- Lights out fabrication
- Digitally mastered coordinated tooling

Resulting in:

- Reduced cycle times up to 85%
- Cost savings up to 80%
- Improved quality

Direct benefits:

- Lower cost
- Shorter lead time

Indirect benefits:

- Design freedom
- Change freedom
- Mass customization
- Weight reductions
- Part consolidation
- Supports lean initiatives
- True JIT (just-in-time)
 manufacturing
- Reduced warehouse
 space/inventory cost

FDM End use parts allowed for:

- Flexibility when designing complex parts
- Manufacture of less expensive part
- Weight saving solutions
- Production of parts that meet FAA regulatory requirements to be installed on aircraft
- Low volume production
- No tooling required

Best fit when:

- Relatively low volumes
 - Short run production
 - Bridge to tooling

High part complexity

- Eliminate expensive tooling
- Reduce long lead times

Part acceptable

- Aesthetics not critical
- Finishing processes feasible
- Physical properties acceptable

Path to Flight Worthy Parts

ADDITIVE MANUFACTURING Aerospace - Defence

First Article Flight Test Parts

- Ultem 9085
- FST zero rating & strength

Part Level Qualification

- Part level testing approved by governing aviation authority
- Non structural parts are primary targets today
- Numerous parts in flight

Material Property Certification

- Testing in work at 3rd party test labs
- Test labs recognized by commercial aerospace & DOD authorities

Pictures courtesy of Evektor

Picture courtesy of Rapid PSI

What **inspires** you is your business How you make it **real** is ours.

THANK YOU

James Janeteas Cimetrix Solutions Inc. jamesj@cimetrixsolutions.com

T .905.728.6962 C. 416-258.1183